Course	Title	MANAGEI	EMNT	SCIE	NCE		B. Tech. EC	E VII Ser	n
Course	Code	Category	Ho	ours/We	ek	Credits	Maxin	um Mar	ks
1525	701	Humanities and social sciences	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total
	_	sciences	3			3	30	70	100
Mid Exa	am Dur	ration: 90 Min.					End Exam	Duratio	n: 3Hrs
Course •	Objecti Provide solving Prepare opportu	e a basic unde and communic for practice unities.	rstandin ations sl in a f	g of m cills. ïeld tha	anagemo nt sees	ent scienc rapid ch	e including a anges in tool	nalytical ls, proble	problem ems and
• • •	 Prepare for graduate study and self-development over an entire career. Provide ability to use the techniques, skills and modern engineering tools necessary for engineering practices. The broad education necessary to understand the impact of engineering solutions in a global and societal context. Background necessary for admission to top professional graduate engineering or business programs 								
Course	Outcon	nes: On success	ful com	pletion of	of this co	ourse, the	students will b	e able to	
CO 1	Know	the principles a	and func	tions of	manage	ment			
CO 2	Under situation	rstand the varion.	ous con	cepts, ap	oproache	es and the	ories of manag	gement in	the real
CO 3	Comp theore	are and cont tical learning co	rast or or oncepts	ganizatio	on struc	ture desig	gns and chart	s diligen	tly with
CO 4	O 4 To be aware of the role, functions and functioning of human resource department of the organizations.								
CO 5	5 Identify the elements of Operations management and develop PERT/CPM Charts for projects of an enterprise and estimate time & amp; cost of project.								
CO 6	Analy decisio	ze the concepons in strategic	t of str manager	ategic presented presented at the presented of the presented at the presen	olanning	and imp	lementation a	ind apply	on the

<u>UNIT- I</u>

Introduction to Management: Concept of Management-Administration, Organization-Function of Management, Evolution of Management Thought-Organization: Principles of Organization-Types-Organization charts-managerial objectives and Social responsibilities of Management.

<u>UNIT – II</u>

Strategic Management: Corporate Planning-mission, objectives and programmes-SWOT Analysis-Strategy Formulation and Implementation.-Plant location and Plant Layout concepts-Production control.

<u>UNIT – III</u>

HRM and Inventory Management: Human Resource Management –Manpower Planning-Personnel Management-Basic functions of Personnel Management, Job Evaluation and Merit Rating-Incentive plans.

Inventory Management: Need for Inventory Control; EOQ, ABC Analysis, Purchase Procedure, Maintaining Store Records.

UNIT-IV

Operations Management: Productivity- Job, Batch and Mass Production-Work Study-Basic procedure involved in Method Study and Work Measurement. Statistical Quality Control-c chart, p chart, R chart, Acceptance sampling Deming's contribution to Quality.

UNIT-V

Project Management: Network Analysis to project management- PERT/CPM- Application of network techniques to engineering problems-Cost Analysis-Project Crashing.

Text Books:

- 1. Aryasri: Management Science, TMH, 2008.
- 2. Koontz&Weihrich: Essentials of Management,6/e,TMH,2005
- 3. Kanishka Bedi: Production and Operations Management, Oxford University Press, 2004
- 4. Parnell: Strategic Management, Biztantra, 2003.
- 5. LS Srinath: PERT/CPM, Affiliated East-West Press, 2005

Reference Books:

- 1. Idustrial Engineering management science :Banga T Rshama SC Agarwal N K, Cambridge
- 2. Management science: Kumthekar MM hukeri Nand Kumar ,EP
- 3. Practical management secience:Winston Wayne LchristianAlbroghtSBroadie mark,Cengage
- 4. Management Science, Logistics ,and operation research; John wang(montaclair state university, USA),IGI

Course Title		VLSI	DESIG	N		B. Tech. EC	E VII Ser	n	
Course Code	Category	Ho	ours/We	ek	Credits	Maxin	ks		
1504702	PJ	L	Т	Р	С	Continuous Internal AssessmentEnd Exams		Total	
	4 3 30 70 10								
Mid Exam Du	ration: 1Hr 30	tion: 1Hr 30 Min End Exam Duration: 3							
Course Object	ives:								
• The mai	n objective of tl	ne cours	e is to in	troduce	the concept	pts of IC fabric	ation		
technolo	gies and their c	orrespor	nding St	ick Diag	grams				
• The cou	rse will also intr	oduce s	caling te	echnique	es of CMO	S devices and	their effec	ets	
• The cou	rse will also fan	niliarize	the stud	lents wit	h CAD/EI	DA tools			
Course Outcor	nes: On success	ful com	pletion of	of this co	ourse, the	students will be	e able to		
CO 1 Descr	ibe the design r	ules and	scaling	concept	S				
CO 2 Under	Understand the various IC technologies and fabrication steps								
CO 3 Apply	Apply the basic functional modules for sub system design								
CO 4 Analy	ze the basic ele	ctrical p	roperties	s of MO	S and BIC	MOS logic cir	cuits		
CO 5 Under	rstand the mode	els of int	egrated	circuit c	lesign and	testing technic	lues		

<u>UNIT-I</u>

Introduction: Introduction to IC Technology – MOS, PMOS, NMOS, CMOS & Bi-CMOS technologies-Substrate preparation, Oxidation, Lithography, Diffusion, Ion implantation, Metallization, Encapsulation, Probe testing, Integrated Resistors and Capacitors.

<u>UNIT-II</u>

Basic Electrical Properties: Basic Electrical Properties of MOS and Bi-CMOS Circuits: $I_{ds}VsV_{ds}$ relationships, MOS transistor threshold Voltage, g_m , g_{ds} , Figure of merit, Pass transistor, NMOS Inverter, Various pull ups and Pull downs, CMOS Inverter analysis and design, Bi-CMOS Inverters.

<u>UNIT-III</u>

VLSI Circuit Design Processes: VLSI Design Flow, MOS Layers, Stick Diagrams, Design Rules and Layout, 2μ CMOS Design rules for wires, Contacts and transistors Layout Diagrams for NMOS and CMOS Inverters and Gates, Scaling of MOS circuits, Limitations of Scaling.

UNIT-IV

Gate Level Design: Logic Gates and Other complex gates, Switch logic, Alternate gate circuits, Basic circuit concepts, Sheet Resistance(R_s) concept and Sheet Resistance R_s in MOS, Area Capacitance Units, Calculations Delays, Driving large Capacitive Loads, Wiring Capacitances.

Subsystem Design: Subsystem Design, Shifters, Adders, ALUs, Multipliers, Parity generators, Comparators, Counters, High Density Memory Elements.

<u>UNIT-V</u>

Semiconductor Integrated Circuit Design: PLAs, FPGAs, CPLDs, Standard Cells,

Programmable Array Logic(PLA'S), Design Approach.

CMOS Testing: CMOS Testing, Need for testing, Test Principles, Design Strategies for test, Chip level Test Techniques, System-level Test Techniques, Layout Design for improved Testability.

Text Books:

- 1. Kamran Eshraghian, EshraghianDougles and A. Pucknell, Essentials of VLSI circuits and systems, PHI, 2005 Edition.
- 2. Weste and Eshraghian, Principles of CMOS VLSI Design, Pearson Education, 1999.
- 3. Douglas A. Pucknell& Kamran Eshraghian, Basic VLSI Design, PHI 3rd Edition (original Edition 1994).
- 4. Neil H.E. Weste, David Harris, Ayan Banerjee, CMOS VLSI Design- A Circuits and Systems Perspective, 3rd Edition, Pearson Education.

Reference Books:

- 1. John .P. Uyemura, Introduction to VLSI Circuits and Systems, JohnWiley, 2003.
- 2. John M. Rabaey, Digital Integrated Circuits, PHI, EEE, 1997.
- 3. Sung-Mo Kang, Yusuf Leblebici, CMOS Digital Integrated Circuits Analysis and Design, McGraw-Hill, Fourth Edition, 2014.
- Wayne Wolf, Pearson Education, Modern VLSI Design, 3rd Edition, 1997.
 S.M. SZE, VLSI Technology, 2nd Edition, TMH, 2003.

Course	Title	ELECTRO IN	ELECTRONIC MEASUREMENTS ANI INSTRUMENTATION				B. Tech. EC	E VII Ser	n		
Course	Code	Category	Ho	ours/We	ek	Credits	Maxin	num Mar	ks		
1504703		PJ	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total		
			4			3	30	70	100		
Mid Exa	ım Dur	ation: 1Hr 30N	Ain				End Exam	Duration	n: 3Hrs		
Course	Objecti	bjectives:									
•	 The presentation of fundamental measurement concepts and measurement methodologies including the description of basic instruments that are the technological implementation of general methodologies. Understanding about the transducers and to help the students analyze various signals using CRO. 										
Course	Outcon	nes: On success	ful com	pletion of	of this co	ourse, the s	students will be	e able to			
CO 1	Define	the performan	ce chara	cteristic	s of an i	nstrument	•				
CO 2	Understand theprinciple of analog, digital voltmeters and wave analyzers										
CO 3	Explain different types of oscilloscopes										
CO 4	Use A	Use AC and DC bridges for relevant parameter measurement.									
CO 5	Apply	the complete k	nowledg	ge of var	ious ele	ctronic tra	nsducers to me	easure the			
	physic	al Quantities in	the field	d of scie	nce and	technolog	У				

<u>UNIT I</u>

Performance characteristics of Instruments: Static characteristics, Accuracy, Resolution, Precision, Expected value, Error, Sensitivity. Errors in Measurement, Dynamic Characteristics-speed of response, Fidelity, Lag and Dynamic error.

Analog Instruments: Transistor Voltmeter, Micro Voltmeter (Chopper type) – DC Differential voltmeter – AC voltmeters – Multi meter -wave analyzers (AF & RF) – Harmonic distortion analyzer- Spectrum analyzer.

<u>UNIT II</u>

Digital Instruments: Digital Voltmeters (Ramp, Dual slope, stair case, successive approximation types) Digital multi meter, Universal counter, Digital tachometer, Digital Phase meter.

UNIT III

Cathode Ray Oscilloscopes: Motion of electron in electronic field and in magnetic field-Block diagram of CRO, CRT, Electrostatic deflection sensitivity – Vertical and Horizontal deflection systems – Principle of operation of dual beam, dual trace, sampling and storage CRO's- Measurements with CRO (Voltage, Current, time, frequency, Phase angle, lissajous figures)

UNIT IV

Bridges: Wheat stone bridge, Kelvin Bridge, Measurement of inductance- Maxwell's bridge, Anderson Bridge. Measurement of capacitance-Schearing Bridge, Wien Bridge Errors and precautions in using bridges- Q meter and measurement methods

<u>UNIT V</u>

Transducers: Active & passive transducers, Resistance, Capacitance, inductance; Strain gauges, LVDT, Piezo Electric transducers, Resistance Thermometers, Thermocouples, Thermistors, Sensistors. Measurement of physical parameters force, pressure, velocity, humidity, moisture, speed, proximity and displacement.Data acquisition systems.

Text Books:

- 1. H.S. Kalsi, Electronic instrumentation, second edition Tata McGraw Hill, 2004.
- **2.** A.D. Helfrick and W.D. Cooper, Modern Electronic Instrumentation and Measurement Techniques –PHI, 5th Edition, 2002.
- **3.** A.K. Sawhney, "A Course In Electrical And Electronic Measurements And Instrumentation", DhanpatRai Publications, 2012.
- **4.** Golding, E.W. and Widdis, F.C., Electrical Measurements and Measuring Instruments, A.H.Wheeler and Co, 5th Edition, 2011.

References:

- 1. David A. Bell, Electronic Instrumentation & Measurements PHI (OUP), 2nd Edition, 2003.
- 2. Robert A.Witte, Electronic Test Instruments, Analog and Digital Measurements Pearson Education, 2nd Ed., 2004.
- **3.** K. Lal Kishore, Electronic Measurements & Instrumentations, Pearson Education 2005.
- **4.** Ernest.O.Doebelin and Dhanesh.N.Manik, Doebelin's Measurement Systems, McGraw Hill Education, 6th Edition, 2011.

Course	Title	OPTIC	AL CO	MMUN	ICATIO	DNS	B. Tech. EC	E VII Ser	n
Course	Code	Category	Ho	ours/We	ek	Credits	Maxin	num Mar	ks
15047	704	PJ	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total
			4			3	30	70	100
Mid Exa	am Dur	ration: 1 Hr 30	Min				End Exam	Duration	n: 3Hrs
Course	Objecti	ives:							
• 7	To unde	understand the functionality of each of the components of fiber optic communication							
S	ystem	tem							
• 1	To unde	rstand the prope	erties an	d princip	oles of d	ifferent ty	pes of optical	fibers, and	d losses
t	hat occu	ur in fibers.							
• 7	To unde	rstand the work	ing and	principle	e of opti	cal source	s (LED and LA	ASER) and	d power
1:	aunchin	g schemes.	C		-		•	,	1
• 7	To analy	ze the operation	n of vari	ous opti	cal dete	ctors (PIN	& APD) and o	optical rec	eiver
• 1	To unde	rstand the desig	n of opt	ical syst	ems. W	DM and M	leasurements	1	
Course	Outcon	nes: On success	ful com	pletion of	of this co	ourse, the	students will b	e able to	
CO 1	Identi	fv the structure	s of Opt	ical fibe	rs based	on modes	, refractive ind	ex and fib	ber
	materi	als.	1				,		
CO 2	Analy	ze the different	kind of	losses ir	n fibers a	and optical	fiber link desi	ign param	eters
CO 3	Categ	orize the types	of optica	al source	es and o	ptical dete	ctors on the ba	sis of phy	sical
	constr	uction and princ	ciple of o	operatio	n.	L		1 /	
CO 4	Expla	in the necessity	for usin	g splice	s, coupl	ers and con	nnectors in ene	rgy transi	mission.
CO 5	Discus	ss WDM conce	pts, Opti	cal Am	olifiers,	Optical Sy	stem design ar	nd Measur	rements

UNIT-I

Introduction and Optical fiber waveguides: Historical Development, The General System, Advantages of Optical Fiber Communications, Ray Theory transmission, Total Internal Reflection, Acceptance angle, Numerical Aperture, Skew Rays, Cylindrical Fiber – Modes, V Number, Mode coupling, Step Index fibers, Graded Index Fibers Single mode fibers - Cut off wavelength, Mode Field Diameter, Effective Refractive Index.

<u>UNIT-II</u>

Fiber Materials - Glass, Halide, Active glass, Chalgenide glass, Plastic optical fibers, Mechanical Properties of Fibers, Fiber Optic Cables.

Transmission Characteristics of optical fibers -Attenuation, Material Absorption Losses in Silica Glass Fibers, Linear Scattering Losses, Fiber Bend Loss, Dispersion, Chromatic dispersion, Intermodal dispersion, Overall fiber dispersion, Polarization – Fiber Birefringence, Polarization Mode Dispersion.

<u>UNIT-III</u>

Power launching and Coupling-Source to Fiber Power Launching – Source output pattern, power coupling calculation, power launching versus wavelength, Equilibrium Numerical Aperture, **Lensing schemes for Coupling Improvement** -non imaging microsphere, Laser diode to fiber coupling, LED coupling to single mode fibers. **Fiber-to-fiber Joints** – Mechanical misalignments, Fiber related losses, Fiber end face preparation, **Fiber Splicing** – Splicing techniques, splicing single mode fibers, **Optical Fiber Connectors** – Connector types, Single mode fiber coupler, Star couplers

UNIT-IV

Optical Sources: Light Emitting Diodes (LEDs) - LED Structures, Light Source Materials, Quantum efficiency and LED Power, Modulation of LED. **LASER Diodes**- Laser Diode Modes and Threshold Conditions, Laser Diode Rate Equations, External Quantum Efficiencies, Resonant Frequencies. **Photo Detectors: Physical principles of photo diodes**-The PIN and Avalanche photo diode (APD), detector response time, structures for InGaAs APDs, temperature effect on avalanche gain, comparisons of photo detectors.

UNIT-V

Optical receiver operation: Fundamental receiver operation, Digital signal transmission, error sources, Receiver configuration, **Optical system design** - Point to point links, system considerations, Link Power budget, Rise time budget, Transmission distance, **Operational principles of WDM** - Types, Fiber grating filters. **Measurements** – Optical Time domain Reflectometer (OTDR). Attenuation Measurements, dispersion Measurements, EYE Patterns.

Text Books:

- 1. Gerdkeiser, Optical fiber communications- McGraw Hill International Edition, 4th Edition, 2010.
- 2. John M. Senior, Optical fiber communications- PHI, 3rd Edition, 2010.
- 3. Oseph C. Plais, Fiber Optic Communication, Pearson Education, 4th Ed, 2004.
- 4. Govind P. Agrawal, Fiber Optic Communication Systems, John Wiley, 3rd Edition, 2004.

Reference Books:

- 1. Max Ming-Kang Liu, Principles and Applications of Optical Communications, TMH, 2010.
- 2. S. C. Gupta, Optical fiber communication and its applications- PHI, 2005.
- 3. Donald J.Sterling Jr., Introduction to Fiber Optics, Cengage learning, 2004.
- 4. DjaferKmynbaev Lowell L. Scheiner, Fiberoptic communications Technology- Pearson Education pte. Ltd.

Course Ti	le Dl	GITA	L IMA	GE PR	OCESS	ING	B. Tech. EC	E VII Sen	n		
Course Co	de Categ	ory	Ho	ours/We	ek	Credits	Maxin	num Mar	ks		
1504703	PJ		L	Т	Р	С	Total				
			4			3	30	70	100		
Mid Exam	Duration: 2	uration: 2Hrs End Exam Duration: 3Hrs									
Course Ob	Objectives:										
• To	To study the image fundamentals and transforms necessary for image processing										
• To	earn the conc	epts of	filterin	g in spat	ial and :	frequency	domain	C			
• To	tudy different	noise	models	and rest	oration	filters					
• To	nderstand dif	ferent i	redunds	ncies ar	nd lossy	and lossle	ss compression	n techniqu	65		
Course Or	tcomes: On s	uccessf	ful com	nletion (of this c	une lossie	students will b	e able to	05.		
	fine various	imaga	process	ing para	matars	Juise, the	students will be				
	chile various	iniage j	process	ing para	meters						
CO 2 E	2 Explain image filtering, segmentation and compression										
CO3 C	Compare different 2D transforms Color models and image restoration techniques										
CO 4 A	oply the conc	epts of	image	processi	ng techi	niques in v	arious applicat	ions.			
CO 5 A	nalyze mathe	matical	operat	ions, coo	ling and	filtering 1	nethods in ima	ge proces	sing.		
<u> </u>	v		1	,	0	0		0 1	υ		

UNIT-I

Introduction: Fields that use digital image processing, fundamental Steps in Digital Image Processing, Components of an Image processing system, elements of Visual Perception. Image sensing and Acquisition, Image formation model, Image Sampling and Quantization - Representing digital images, spatial and intensity resolution. Relationship between pixels - neighbours of a pixel, Adjacency, Connectivity, Regions and boundaries, distance measures, Mathematical tools in digital image processing – Array versus matrix operations, Linear and Nonlinear Operations, Arithmetic operations, geometrical spatial transformations and image registration.

<u>UNIT-II</u>

Image Transforms: General approach for operating in the linear transform domain, 2-D DFT and Properties, Walsh transform, Hadamard Transform, Discrete cosineTransform, Haar transform, Slant transform, KL Transform or Hotelling transform

<u>UNIT-III</u>

Image Enhancement: Image enhancement in Spatial domain - Some Basic Intensity Transformations, Histogram Processing, Enhancement, Basics of Spatial filtering, Smoothing spatial filtering, sharpening spatial filters, Combining spatial enhancement methods.

Image enhancement in the Frequency Domain –Basics of filtering in frequency domain, Image smoothing and sharpening in frequency domain, homomorphic filters. Color image processing, Color fundamentals, color models.

UNIT-IV

Image Restoration: Degradation model, Noise models, Restoration in the presence of noise only – spatial filtering, Periodic noise reduction by frequency domain filtering, Linear position-Invariant degradation, Inverse filtering, least mean square (Wiener) filters, Constrained Least Squares filtering.

Image Segmentation: Point, Line and Edge detection, Edge linking and boundary detection, Thresholding, Region based segmentation – Region growing, Region splitting and merging.

UNIT-V

Image Compression: Redundancies in images, Fidelity criteria, Image compression models, Error free compression – Variable length coding, Huffman coding, Arithmetic coding, LZW coding, Bit-plane coding, loss less and lossy predictive coding, Transform coding, Image Compression standards.

Text Books:

- 1. R.C. Gonzalez & R.E. Woods, Digital Image processing –Addison Wesley/ Pearson Ed., 2nd Edition, 2002.
- 2. A.K.Jain, Fundamentals of Digital Image processing -Prentice Hall of India.
- 3. ScotteUmbaugh, Digital Image Processing and Analysis-Human and Computer Vision Application with using CVIP Tools 2nd Ed, CRC Press, 2011
- 4. Somka, Hlavac, Boyle, Digital Image Processing and Computer Vision Cengage Learning (Indian edition) 2008.

Reference Books:

- 1. Rafael C. Gonzalez, Richard E Woods and Steven L., Digital Image processing using MAT LAB –Edition, PEA, 2004.
- 2. Adrian low, Introductory Computer Vision Imaging Techniques and Solutions-Adrian low, 2008, 2 nd Edition
- 3. William K. Pratt, Digital Image Processing –John Wiley, 3rd Edition, 2004.
- 4. Jayaraman, S. Esakkirajan and T. Veerakumar, Digital Image Processing, Tata McGraw Hill Education, 2010.

Course	Title	EMBEDDED REAL TIME OPERATING SYSTEMS B. Tech. ECE VII Ser			n					
Course	Code	Category	Ho	ours/We	ek	Credits	Maxin	um Mar	ks	
1504706		PJ	L	Т	Р	С	Continuous Internal AssessmentEnd ExamsT			
		ration: 1Hr 30	4			3	30	70	100	
Mid Exa	xam Duration: 1Hr 30Min End Exam Duration: 3Hrs									
Course	e Objectives:									
•	The ma	in objective of ints that arise w	the cour	se is to g	get stude	ents familia	ar with the typi pedded systems	ical proble	ems and	
•	The couproblem problem studies.	urse will also in ns that the stude	troduce ents are	theoretic expected	cal and j l to mas	practical so ter and be	olutions to thes able to apply to	e typical o realistic	case	
Course	Outcon	nes: On success	ful com	pletion of	of this c	ourse, the	students will be	e able to		
CO 1	Describe the fundamentals of Embedded System									
CO 2	Illustrate the basic programming models									
CO 3	Contrast the different interfaces and protocols									
CO 4	Use of RTOS and its Tasks									
CO 5	Demo	nstrate differen	nt case s	tudies of	f ERTO	S.				

<u>UNIT I</u>

Introduction: History of Embedded Systems, classification of Embedded Systems, skills required for Embedded Systems designer, Major Application Areas of Embedded Systems, Purpose of Embedded Systems, Core of the Embedded System, Sensors and Actuators, Communication Interface, Embedded Firmware, Characteristics of an Embedded System, Quality Attributes of Embedded Systems.

<u>UNIT II</u>

Hardware Software Co-Design and Programme Modeling: Fundamental Issues in Hardware Software Co-Design, Computational Models in Embedded Design, Introduction to Unified Modeling Language (UML), Hardware Software Trade-offs.

Embedded Hardware Design and Development: Analog Electronic Components, Digital Electronic Components, VLSI and Integrated Circuit Design, Electronic Design Automation (EDA) Tools.

<u>UNIT III</u>

Devices and Communication Buses: IO Types and Examples, Serial Communication Devices, Parallel Device Ports, Sophisticated Interfacing Features in Device Ports, Wireless Devices, Timer and Counting Devices, Watchdog Timer, Real Time Clock, Networked Embedded Systems, Serial Bus Communication Protocols, Parallel Bus Device Protocols-Parallel Communication Network Using ISA, PCI, PCI-X and Advanced Buses, Internet Enabled Systems- Network Protocols, Wireless and Mobile System Protocols.

<u>UNIT IV</u>

Real-Time Operating Systems (RTOS) Based Embedded System Design: Operating System Basics, Types of Operating Systems, Tasks, Process and Threads, Multiprocessing and Multitasking, Task Scheduling, Threads, Processes and Scheduling :Putting them Altogether, Task Communication, Task Synchronization, Interrupt Routines in RTOS

Environment and Handling of Interrupt Source Calls, OS Security Issues, Device Drivers, How to Choose an RTOS

<u>UNIT V</u>

Design Examples and Case Studies of Program Modeling and Programming With RTOS: Case study of Communication between Orchestra Robots, Embedded Systems in Automobile, Case study of an Embedded System for an Adaptive Cruise Control(ACC) System in a Car, Case study of an Embedded System for a Smart Card, Case study of a Mobile Phone Software for Key Inputs.

Text Books:

- 1. Shibu KV, Introduction to Embedded System- Mc-Graw Hill Higher Edition.
- 2. Raj Kamal, Embedded Systems Architecture, Programming and Design- Second Edition, McGraw-Hill Companies.
- 3. Peter Marwedel, Embedded System Design, Springer.
- 4. Marilyn Wolf, Computers as Components: Principles of Embedded Computing System Design, Morgan Kaufman Publishers, 2001.

Reference Books:

- 1. Frank Vahid, Tony D. Givargis, Embedded System Design A Unified Hardware/Software Introduction- John Wiley, 2002.
- 2. KVKK Prasad, Embedded/ Real Time Systems- Dreamtech Press, 2005.
- 3. David E. Simon, An Embedded Software Primer- Pearson Ed. 2005
- 4. Jonathan W.Valvano, Embedded Microcomputer systems real time interfacing, Third edition, Cengage Learning, 2012.

Course Title	NEURAL	NETW L(ORKS A	AND FU	UZZY	B. Tech. EC	E VII Ser	n	
Course Code	Category	Ho	ours/We	ek	Credits	Maximum Marks			
1504707	PJ	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total	
		4			3	30	70	100	
Mid Exam Du	ration: 1Hr 30	Min				End Exam	Duration	n: 3Hrs	
Course Objec	bjectives:								
• To pro	o provide an introduction to biological neuron, construction of artificial neuron from								
biolog	iological neurons, neural network topologies and various learning rules.								
• To m	To make students to get familiarized with supervised learning, linearly separable								
pattern	patterns, linearly non separable patterns and different training algorithms.								
To Kn neural	ow the Concepts networks.	s of unsu	pervised	d learnii	ng rule wit	h examples & t	the applic	ations of	
To pro	vide an introduc	tion to f	uzzy set	theory	and variou	s operations of	f fuzzy set	ts.	
• To ma	ake the students	to get	familiar	ized wi	th the des	ign of fuzzy l	logic syst	em with	
examp	oles.								
• that th	e students are ex	pected t	o master	r and be	able to ap	ply to realistic	case studi	ies.	
Course Outco	mes: On success	sful com	pletion of	of this c	ourse, the	students will b	e able to		
CO 1 Unde	e rstand thework	ingofbio	logical a	and artif	icial neura	ll networks.			
CO 2 Anal	Analyze different training methods.								
CO 3 Illust	Illustrate the basic concepts of Fuzzy systems and relations.								
CO 4 Desc	ribe the concept	s of adap	otive fuz	zy syste	ems and fu	zzy associative	e memorie	28.	

<u>UNIT-I</u>

Biological Neural Networks: Organization of human brain, Neuron functions, Cell body, Axon, Dendrites, Cell membrane, Computers and human brain.

Artificial Neural Networks: Artificial neuron, Mc Culloah-Pitts neuron model, Characteristics, activation functions, Architectures (single layer and multi layer) and applications of ANNs. Training: supervised and unsupervised, Different learning rules.

Perceptrons: Perceptron representation, Ex – OR problem, Linear separability, Learning, Training algorithm, Advanced algorithm (Back propagation) and applications.

<u>UNIT-II</u>

Counter Propagation Networks: Introduction, Network structure, Normal operation, Weight selection, Training Kohenen and Grossberg layers, Full counter propagation network, applications.

Hopfield Networks: Recurrent network configurations, Applications

<u>UNIT-III</u>

Statistical Methods: Training, application, Boltzman training, Back propagation and Cauchy's training.

Bidirectional Associative Memories (BAM):BAM structure, Retrieving a stored association, Encoding association, Memory capability, Types of BAM: Continuous, Adaptive, Competitive.

Adaptive Resonance Theory: ART architecture, Implementation, Training example, Characteristics.

UNIT-IV

Introduction To Fuzzy Systems: Classical (Crisp) sets, Notation, Basic concepts, Fuzzy sets, basic concepts, Properties of fuzzy sets, Fuzzy operations: Compliment, Union, Intersection. **Fuzzy Relations:** Binary relations review, Equivalence and similarity relations, Compatibility relations, Orderings and Morphisms.

Fuzzy Measures: Belief and plausibility measures, Probability, Possibility and necessity measures.

UNIT-V

Adaptive Fuzzy Systems: Neural and fuzzy machine intelligence, Fuzzyness as multivariance, Fuzzyness in probabilistic world, randomness Vs ambiguity, Sets as points in cube. Fuzzy Associative Memories (FAM): Fuzzy systems as between cube mappings, Fuzzy and neural function estimators, Neural Vs fuzzy representation of structured knowledge, FAMs as mappings, Fuzzy Hebb FAMS: Bidirectional FAM theorem, Superimposing FAM rules, FAM system architecture.

Text Books:

1. Philip D. Wasserman, Neural Computing, Theory and Practice, Van Nostrand Reinhold.

2. George I. Klir and Tina A. Folger, Fuzzy Sets, Uncertainty and Information ,PHI

3. Bart Kosko, Neural Networks and Fuzzy Systems, PHI.

4. S. Haykin, Neural Networks: A Comprehensive Foundation, Prentice- Hall India, 2nd Edition, 1999.

Reference Books:

1. Jacek M. Zurada, Introduction to Artificial Neural Systems, Jaico Publishing House.

2 . Laurence Fausett, Fundamentals of Neural Networks, Architectures, Algorithms and Applications, Pearson Ed.

3. Timothy Ross, Fuzzy Logic with Engineering Applications, TMH.

4. Fakhreddine O. Karray, Clarence De Silva, Soft Computing and Intelligent Systems Design, Pearson Ed.

Course	Title	DATA	COM	MUNIC	ATION	S	B. Tech. EC	E VII Ser	n	
Course	Code	Category	Ho	ours/We	ek	Credits	its Maximum Marks			
1504708		PJ	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total	
			4			3	30	See See simum Marks Is End It T 70 1 am Duration: 3 communication erarchy. e systems. g and decoding. 1 be able to	100	
Mid Exa	Mid Exam Duration: 1Hr30minEnd Exam Duration: 3Hrs									
Course	Objectives:									
•	Main objective of this course is to provide insight about the data communication and networks.									
•	Studer	nts are able to le	arn Digi	ital mult	iplexing	technique	es and its hiera	rchy.		
•	To ma	ke familiarize v	vireless	commur	nications	and cellu	lar telephone s	ystems.		
•	To fan	niliarize the des	ign of B	CH, Co	nvolutio	n codes bo	oth encoding an	nd decodin	ng.	
Course	Outcon	nes: On success	ful com	pletion of	of this co	ourse, the	students will be	e able to		
CO 1	Descr	ibe the network	layer m	odel						
CO 2	Apply various error correction and detection methods in communication.									
CO 3	Understand various multiplexing techniques and operation of Wireless networks									
CO 4	Illustr	rate different te	lephone	circuits	and mo	dems				

<u>UNIT I</u>

Introduction to Data Communications and Networking: Standards Organizations for Data Communications, Layered Network Architecture, Open Systems Interconnection, Data Communications Circuits, Serial and parallel Data Transmission, Data communications Circuit Arrangements.

Metallic Cable Transmission Media: Metallic Transmission Lines, Transverse Electromagnetic Waves, Characteristics of Electromagnetic Waves, Transmission Line Classifications, Metallic Transmission Line Types, Metallic Transmission Line Equivalent Circuit, Wave Propagation on Metallic Transmission Lines, Metallic Transmission Line Losses.

<u>UNIT II</u>

Multiplexing and T Carriers: Time- Division Multiplexing, T1 Digital Carrier System, North American Digital Multiplexing Hierarchy, Digital Line Encoding, T Carrier systems, European Time- Division Multiplexing, Statistical Time – Division Multiplexing, Frame Synchronization, Frequency-Division Multiplexing, Wavelength- Division Multiplexing, Synchronous Optical Network.

UNIT III

Wirless Communications Systems: Electromagnetic Polarization, Rays and Wave fronts, Electromagnetic Radiation, Spherical Wave front and the Inverse Square Law, wave Attenuation and Absorption, Optical Properties of Radio Waves, Terrestrial Propagation of Electromagnetic Waves, Skip Distance, Free-Space Path Loss, Microwave Communications Systems, Satellite Communications Systems.

Cellular Telephone Systems: Concepts – Frequency reuse- Cell splitting – Network components – Call Processing - First- Generation Analog Cellular Telephone, Personal

Communications system, Second-Generation Cellular Telephone Systems, N-AMPS, Digital Cellular Telephone, Global system for Mobile Communications.

<u>UNIT IV</u>

Telephone Instruments and Signals: The Subscriber Loop, Standard Telephone Set, Basic Telephone Call Procedures, Call Progress Tones and Signals, Cordless Telephones, Caller ID, Electronic Telephones, Paging systems.

The Telephone Circuit: The Local Subscriber Loop, Telephone Message- Channel Noise and Noise Weighting, Units of Powers Measurement, Transmission Parameters and Private-Line Circuits, Voice-Frequency Circuit Arrangements, Crosstalk.

<u>UNIT V</u>

Data Communications Codes, Error Control, and Data Formats: Data Communications Character Codes, Bar Codes, Error Control, Error Detection, Error Correction, Character Synchronization.

Data Communications Equipment: Digital Service Unit and Channel Service Unit, Voice-Band Data Communication Modems, Bell Systems- Compatible Voice- Band Modems, Voice- Band Modern Block Diagram, Voice- Band Modem Classifications, Asynchronous Voice-Band Modems, Synchronous Voice-Band Modems, Modem Synchronization, ITU-T Voice- Band Modem Specifications, 56K Modems, Modem Control: The AT Command Set, Cable Modems, Probability of Error and Bit Error Rate.

Text Books:

1. Wayne Tomasi, Introduction to Data Communications and Networking, Pearson Education.

2. Andrew S Tanenbaum, Computer Networks, 4th Edition. Pearson Education, PHI.

3. S. Keshav, An Engineering Approach to Computer Networks, 2nd Edition,

Pearson Education.

4. Kurose James F, Keith W, Computer Networking A Top-Down Approach –6th Edition, Pearson.

Reference Books:

1. Behrouz A Forouzan, Data Communications and Networking, 4th Edition, TMH.

- 2. Gallow, Computer Communications and Networking Technologies, 2nd edition, Thomson.
- **3**. Fred Halsll, Lingana Gouda Kulkarni, Computer Networking and Internet, 5th Edition, Pearson Edu. Society.

4. William Stallings, Data and Computer Communication, Sixth Edition, Pearson Education, 2000

Course	Title	MICH COM	ROWAVE & OPTICAL MMUNICATIONS LAB			B. Tech. ECH		E VII Sem			
Course	Code	Category	He	ours/We	ek	Credits	Maxim	num Mar	ks		
1504709		PJ	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total		
					3	2	50	50	100		
							End Exam	Duration	: 3Hrs		
Course	Objecti	bjectives:									
• 1	To provide knowledge on various types of waveguides.										
• 1	o find t	the S-matrix of	differen	t Junctic	ons and	to obtain (Gun Diode and	RKO			
с	haracte	ristics.									
• 1	o find i	numerical apert	ure and	bending	losses o	of given op	tical fiber.				
Course	Outcon	nes: On success	ful com	pletion of	of this c	ourse, the	students will be	e able to			
CO 1	Analy	ze the character	ristics of	f differen	nt micro	wave sour	ces.				
CO 2	Measure the parameters of wave guide and microwave junctions.										
CO 3	Examine the characteristics of optical fiber and sources.										
CO 4	Verif	y the characteri	stics of	microwa	ive anter	nnas					

Part – A (Any 7 Experiments):

- 1. Reflex Klystron Characteristics.
- 2. Gunn Diode Characteristics.
- **3.** Attenuation Measurement.
- 4. Directional Coupler Characteristics.
- 5. VSWR Measurement.
- 6. Impedance Measurement.
- 7. Waveguide parameters measurement.
- 8. Scattering parameters of Directional Coupler.
- 9. Scattering parameters of Magic Tee.

Part – B (Any 5 Experiments):

- **1.** Characterization of LED.
- 2. Characterization of Laser Diode.
- 3. Intensity modulation of Laser output through an optical fiber.
- 4. Measurement of Data rate for Digital Optical link.
- 5. Measurement of NA.
- 6. Measurement of losses for Analog Optical link.
- 7. Radiation Pattern Measurement of Antennas (at least two antennas).

Course Title			VLSI L	B. Tech. ECE VII Sem						
Course Code	Category	Ho	ours/We	Maximum Marks						
1504710	PJ	L	Т	Р	С	Continuous Internal Assessment	Total			
				3	2	50	50	100		
	End Exam Duration: 3Hrs									

Course Objectives:

- To provide knowledge on various types of combinational and sequential circuits.
- To improve the knowledge on Verilog programming.
- To find RTL schematic and synthesis reports.

Course	Outcomes: On successful completion of this course, the students will be able to
CO 1	Apply switching theory in the design of logic circuits. (L3)
CO 2	Analyze the combinational logic circuits and sequential logic circuits. (L4)
CO 3	Model various digital circuits using Verilog HDL. (L5)
CO 4	Synthesize different logic circuits and debug using FPGA/CPLD.

Software required: Xilinx ISE simulator

List of Experiments

Combinational Design Exercises:

- **1**. Design of 8:3 Priority Encoder.
- 2. Design of 4 Bit Binary to Gray code Converter.
- **3**. Design of 4 Bit Binary to BCD Converter using sequential statement.
- 4. Design an 8 Bit parity generator (with for loop and Generic statements).
- 5. Design of 2^s Complementary for 8-bit Binary number using Generate statements.
- 6. Design Arithmetic Logical Unit (ALU) using VHDL.

Sequential Design Exercises:

1. Design of all type of Flip-Flops using (if-then-else) Sequential Constructs.

2. Design of 8-Bit Shift Register with shift Right, shift Left, Load and Synchronous reset.

3. Design of Synchronous 8-Bit universal shift register (parallel-in, parallel-out) with 3 state output (IC 74299).

4. Design counters (MOD 3, MOD 5, MOD 8, MOD 16).

5. Design a decimal up/down counter that counts up from 00 to 99 or down from 99 to 00.

6. Design 3-line to 8-line decoder with address latch.

Note: Implement at least two combinational and two sequential designs using FPGA/CPLD trainer kit.

Course Title	CE	CELLULAR & MOBILE COMMUNICATIONS					B. Tech. ECE VIII Sem			
Course Code	Category	Ho	ours/We	ek	Credits	Maxin	um Mar	ks		
1504801	РЈ	L T P			С	Continuous Internal Assessment	End Exams	Total		
		4			3	30	70	100		
Mid Exam Dura	ation: 1Hr 30	Min				End Exam	Duratio	n: 3Hrs		
Course Objectiv	ves:									
 The main objective of the course is to provide a comprehensive knowledge in the area of mobile communication This course provides the overview of Digital mobile telephony and Digital Cellular systems 										

Course	Course Outcomes: On successful completion of this course, the students will be able to							
CO 1	Describe the Elements of Cellular Radio System Design							
CO 2	Analyze radio propagation losses at different cell site and mobile antennas.							
CO 3	Distinguish the CO-Channel and adjacent channel interference.							
CO 4	Describe various handoffs and different channel assignment.							
CO 5	Under stand the different digital cellular systems and multiple access techniques.							

<u>UNIT-I</u>

Introduction to Cellular Mobile Systems: A basic Cellular System, Performance criteria, uniqueness of mobile radio environment, operation of cellular systems, planning a cellular system, Hexagonal shaped cells, Analog and Digital Cellular systems.

Elements of Cellular Radio System Design: General description of the problem, concept of frequency channels, Co-channel Interference Reduction Factor, desired C/I from a normal case in an omni directional Antenna system, Cell splitting, consideration of the components of Cellular system

<u>UNIT-II</u>

Cell Coverage for Signal and Traffic: Signal reflections in flat and hilly terrain, effect of human made structures, phase difference between direct and reflected paths, constant standard deviation, straight line path loss slope, and general formula for mobile propagation over water and flat open area, near and long distance propagation antenna height gain, form of a point to point model.

UNIT-III

Interference: Introduction to Co-Channel Interference, real time Co-Channel interference, design of Antenna system, diversity receiver, types of non-co-channel interference.

Cell Site and Mobile Antennas: Sum and difference patterns and their synthesis, omni directional antennas, directional antennas for interference reduction, space diversity antennas, umbrella pattern antennas, minimum separation of cell site antennas, high gain antennas.

UNIT-IV

Frequency Management and Channel Assignment: Numbering and grouping, setup, access and paging channels, channel assignments to cell sites and mobile units, channel sharing and borrowing, sectorization, overlaid cells, non fixed channel assignment.

Handoffs: Handoff, dropped calls and cell splitting, types of handoff, handoff invitation, delaying handoff, forced handoff, mobile assigned handoff. Intersystem handoff, cell splitting, micro cells, vehicle locating methods, dropped call rates and their evaluation.

UNIT-V

Digital Cellular and Mobile Networks: GSM architecture, GSM channels, multiple access schemes, TDMA, CDMA.

Text Books:

- 1. W.C.Y. Lee, Mobile Cellular Telecommunications, McGraw Hill, 2nd Ed, 1989.
- 2. T.S Rappaport, Wireless Communications, Pearson Ed., 2nd Ed., 2002.
- 3. Gordon L. Stuber, Principles of Mobile Communications –Springer International, 2nd Edn., 2001.
- 4. Simon Haykin, Michael Moher, Modern Wireless Communications- Pearson Eduction, 2005.

Reference Books:

- 1. R. Blake, Wireless Communication Technology Thompson Asia Pvt. Ltd., 2004.
- 2. Jon W. Mark and Zhqung, Wireless Communication and Networking, PHI, 2005.
- 3. Andrea Goldsmith, Wireless Communications –Cambridge University Press, 2005.

4. Asrar U. H .Sheikh, Wireless Communications Theory and Techniques, Springer, 2004.

Course	e Title	SATELLITE COMMUNICATIONS					B. Tech. EC	E VIII Se	m
Course	Code	Category	He	Hours/Week Credits			Maxim	um Mar	ks
1504802		PJ	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total
			4			3	30	70	100
Mid Exa	am Dura	ation: 1Hr 30	Min				End Exam	Duration	n: 3Hrs
Course	Objectiv	ves:							
• 7	To give f	amiliarity with	Satellit	e comm	unicatio	ons, Spread	Spectrum tech	iniques.	
• 1	Make to 1	understand Sat	ellite lin	k desigr	and Sa	tellite mul	tiple access tec	hniques.	
• 7	Fo under	stand Satellite	subsyste	 ms				1	
• 1		stand Satemic	subsyst						
Course	Outcom	es: On success	ful com	pletion of	of this c	ourse, the	students will be	e able to	
CO 1	Describ	be the concepts	of Sate	llite Cor	nmunic	ation in spa	ace research.		
CO 2	Unders	tand the orbita	l aspects	s involve	ed in spa	ace commu	inication applic	cations.	
CO 3	Design	various satelli	te links		-				
CO 4	Analyz	ze the concepts	of mult	iple acc	ess tech	niques			
CO 5	Design	large Antenn	as, Trac	king and	l Small	Earth Stati	ion Antennas		

<u>UNIT I</u>

Introduction: The origin of satellite communication, a brief history of satellite communications, the current state of satellite communications

Orbital Aspects of satellite communications: Orbital mechanics look angle determination, orbital perturbation, Orbital determination, Launches and launch vehicles, Orbital effects in communication system performance.

<u>UNIT II</u>

Space Craft: Introduction, space craft sub system, attitude and orbit control system, telemetry, tracking and command, power systems, communication sub systems, space craft antennas.

UNIT III

Satellite link design: Basic transmission theory, system noise temperature and G/T ratio, design of down links, up link design, design of satellite links for specified C/N.

<u>UNIT IV</u>

Multiple Access: Frequency division multiple access (FDMA), Single and Multiple channel per carrier, FDM/FM/FDMA link ,Time division Multiple access (TDMA), TDMA frame structure and frame efficiency, TDMA super frame structure, Frame acquisition and synchronization, Code Division Multiple access(CDMA), PN sequence, Direct sequence and Frequency hopped spread spectrum system, Demand assignment multiple access, Demand assignment TDMA, SCPC-DAMA, SPADE.

<u>UNIT V</u>

Earth Station Technology: Earth Station Design, Design of large Antennas, Tracking, Small Earth Station Antennas, Equipment for Earth Stations.

Text Books:

- 1. Timothy Pratt, Charles Bostian and Jeremy Allnutt, Satellite Communications, Wiley Publications, 2nd Edition, 2003.
- 2. Wilbur L. Pritchard, Robert A Nelson and Henri G.Suyderhoud, Satellite Communications Engineering ,Pearson Publications, 2nd Edition, 2003.
- 3.M. Richharia, Satellite Communications: Design Principles, BS Publications, 2nd Edition, 2003.
- 4.D.C Agarwal, Satellite Communication, Khanna Publications, 5th Ed.

References

- 1. Robert M.Giglardi, Satellite Communication, CBS Publication
- 2. K.N. Raja Rao, Fundamentals of Satellite Communications -PHI, 2004
- 3. Dennis Roddy, Satellite Communications, McGraw Hill, 4th Edition, 2009.
- 4. Tri T. Ha, Digital Satellite Communications, 2nd Ed., MGH, 1990.

Course	Title]	RADAR	SYSTI	EMS		B. Tech. ECE VIII Sem.				
Course	Code	Category	Hours/Week			Credits	Maximum Marks				
1504803		PJ	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total		
			4			3	30	70	100		
Mid Exa	am Dura	ation: 1Hr 30	Min				End Exam	Duratio	n: 3Hrs		
Course	Course Objectives:										
• 7	The object	ctive of the cou	urse is to	acquair	nt the kr	owledge a	bout radar sub	systems, t	heir		
p	erforma	nce and key fu	nctions.	-		-		•			
• 7	This cour	se also provid	es the in	depth k	nowleds	ge and issu	es related varie	ous tracki	ng		
r	adars	1		1	· · ·				0		
_											
Course	Outcom	es: On success	sful com	pletion of	of this c	ourse, the	students will be	e able to			
CO 1	Unders	tand the essent	tial princ	iples of	operation	on of radar	systems.				
CO 2	Describ	be the various	Radar co	mponer	nts						
CO 3	Analyz	e different Rad	lar syste	ms							
CO 4	Analyz	ve differentrad	io navio	ation sys	stems						

<u>UNIT-I</u>

Fundamentals: Radar block diagram and operation, Radar frequencies, simple form of radar equation, Minimum detectable signal, Receiver noise and S/N ratio, Probability density functions, Integration of Radar pulses, Radar cross-Section of targets, PRF.

<u>UNIT-II</u>

Radar components: RF amplifier, TWT, CFA, Modulators, Mixers-Conversion loss, Noise figure, Types of Mixers, Duplexers-Branch type, Balanced and Solid state Duplexers, Displays-CRT displays, A, B, C, E-scopes, PPI, RHI.

UNIT-III

Radar systems: CW radar, FMCW radar, Multiple frequency C.W radar, MTI radar-Delay line cancellers, Pulse repetition frequencies, range gated Doppler filters, tracking radar-Range and angle tracking, Sequential lobbing and Conical scanning,

UNIT-IV

Radio direction finding and ranging: The loop antenna, the goniometer, errors in direction finding, The LF/MF four course radio ranges, VHF-VOR, VOR receiving equipment.

UNIT-V

Hyperbolic systems of navigation &DME: Loran-A, Loran-C, Decca navigation system, Decca receivers, DME-operation, TACAN&TACAN equipment.

Text Books:

- 1. Merrill I. Skolnik, Introduction to Radar Systems, TMH Special Indian Edition, 2nd Ed., 2007.
- 2.N.S. Nagaraja, "Elements of electronic navigation, 2nd edition-TMH 1996.
- 3.Byron Edde, Radar: Principles, Technology, Applications –Pearson Education, 2004.
- 4. Peebles Jr., P.Z. Wiley, Radar Principles, New York, 1998

References

- 1. M. Kulkarni, Microwave and Radar Engineering, Umesh Publications, 1998.
- 2. Mark A. Richards, James A. Scheer, William A. Holm, Principles of Modern Radar: Basic Principles –Yesdee, 2013
- 3. Merrill I. Skolnik, Radar Handbook 3rd Ed., McGraw Hill Education, 2008
- 4. M.I. Skolnik, Introduction to Radar Systems, 3rd edition –MC GRAW HILL EDUCATION, 2005

Course	e Title	SP	EECH I	PROCE	SSING		B. Tech. ECE VIII Sem.			
Course	Code	Category	Hours/Week Credits			Credits	Maximum Marks			
1504804		PJ	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total	
			4			3	30	70	100	
Mid Exa	Mid Exam Duration: 1Hr 30 MinEnd Exam Duration: 3Hrs									
Course	Objectiv	ves:								
• 7	This cour	se seeks to far	niliarize	student	s with F	undament	al concepts of	speech pro	oduction	
a	nd speed	ch perception								
• N	Aathema	tical foundation	ons of s	ignal pi	ocessin	g and pat	tern recognitio	on, Comp	utational	
n	nethods	for speech ana	lysis, red	cognitio	n, synthe	esis, and m	nodification			
Course	Outcom	es: On success	sful com	pletion of	of this co	ourse, the	students will be	e able to		
CO 1	Apply t	he Fundament	al conce	pts of sp	beech pr	oduction a	and speech percent	ception in	speech	
	signal p	processing.							-	
CO 2	Describ	e the mechani	sms of h	uman sp	peech pr	oduction.				
CO 3	Choose	appropriate fe	eatures o	f speech	for spe	ech recogr	nition.			
CO 4	Design	speech recogn	ition sys	stem usi	ng statis	tical mode	els.			

UNIT-I

The Speech Production mechanism: Physiological and Mathematical Model, Relating the physiological and mathematical model, Categorization of Speech Sounds based on the source-system and the articulatory model.

<u>UNIT- II</u>

Basic Speech Signal Processing Concepts: Discrete time speech signals, relevant properties of the fast Fourier transform and Z-transform for speech recognition, convolution, linear and non linear filter banks,

Spectral estimation of speech using the Discrete Fourier transform, Pole-zero modeling of speech and linear prediction (LP) analysis of speech, Homomorphic speech signal deconvolution, real and complex cepstrum, application of cepstral analysis to speech signals.

UNIT-III

The Speech Recognition Front End: Feature extraction for speech recognition, Static and dynamic features for speech recognition, robustness issues, discrimination in the feature space, feature selection.Mel frequency cepstral co-efficients (MFCC), linear prediction cepstral coefficients (LPCC), Perceptual LPCC.

UNIT-IV

Distance measures for comparing speech patterns: Log spectral distance, cepstral distances, weighted cepstral distances, distances for linear and warped scales, Dynamic Time Warping for Isolated Word Recognition.

<u>UNIT-V</u>

Statistical models for speech recognition: Vector quantization models and applications in speaker recognition, Gaussian mixture modeling for speaker and speech recognition, Discrete

and Continuous Hidden Markov modeling for isolated word and continuous speech recognition.

Text books:

1. Thomas F Quatieri, —Discrete-Time Speech Signal Processing – Principles and Practicel, Pearson Education, 2004.

2. Lawrence Rabiner and Biing-Hwang Juang, —Fundamentals of Speech Recognition^{II}, Pearson Education, 2003.

3. Daniel Jurafsky and James H Martin, —Speech and Language Processing – An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition, Pearson Education, 2002.

4. Lawrence R.Rabiner & Ronald W.Schafer, Digital Processing of Speech Signals, Pearson

Reference Books:

1. Claudio Becchetti and LucioPrinaRicotti, —Speech Recognition, John Wiley and Sons, 1999.

2. Ben Gold and Nelson Morgan, —Speech and Audio Signal Processing, Processing and Perception of Speech and Musicl, Wiley- India Edition, 2006.

2. Steven W. Smith, —The Scientist and Engineer"s Guide to Digital Signal Processing, California Technical Publishing, 1997.

3. T. Dutoit, F. Marqués, L.R. Rabiner, Applied signal processing: a MATLAB-based Proof of Concept, Springer

4. Ben Gold & Nelson Morgan, Speech & Audio Signal Processing- 1st Ed., Wiley

Course	e Title	OBJECT-O	RIENT THROU	ED PR JGH JA	B. Tech. ECE VIII Sem.				
Course	Code	Category	Ho	ours/We	ek	Credits	Maxin	num Mar	ks
1504	805	PJ	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total
			4			3	30	70	100
Mid Exa	am Dura	ation: 1Hr 30	Min				End Exam	Duration	n: 3Hrs
Course	Objectiv	ves:							
To know	the star	ndard tools and	techniq	ues for	software	e developn	nent, using obje	ect	
oriented	approac	h, use of a vers	sion con	trol syst	em, an a	automated	build process,	an	
appropri	ateframe	work for autor	nated ui	nit and in	ntegratio	on tests.	-		
					U				
Course	Outcom	es: On success	ful com	pletion of	of this c	ourse, the	students will b	e able to	
CO 1	Unders	tand simple ab	stract da	ata types	and des	sign imple	mentations		
CO 2	Descri	be the features	of object	ct-orient	ed desig	gn such as	encapsulation,	polymorp	ohism,
	inherita	ince, and comp	osition	of system	ms base	d on object	t identity		
CO 3	Apply s	some common	object-o	oriented	design	patterns an	d give example	es of their	use.
CO 4	Design	applications w	vith an e	vent-dri	ven grap	ohical user	interface		

<u>UNIT I</u>

Overview of programming: Programming paradigms, Basics of object oriented programming, Brief history of java, Structure of a java program-token comments, identifiers, keywords, literals, input& output mechanisms, Java development and runtime environment setup.

<u>UNIT II</u>

Statements: Labeled, Expression, Null and Compound Statements, Control statements-Conditional, Unconditional Control Transfers, Loops.

Arrays: Declaration, and Creation, Accessing array elements, Initialization and assigning values, Assigning array to another array, Library methods for arrays, Multidimensional arrays, Characters array, passing array to functions.

<u>UNIT III</u>

Methods or functions: Declaration, definition and a call of method or function, Main method arguments, Reference variables. Method overloading, parameter passing, Recursion, Scope of variables. Return from methods.

Data abstraction through classes: class, class and Member modifiers, Constructors, Dynamic memory management, The keyword, Static members, Scope of variables, interfaces, implementing and Extending, packages, Exception handling.

<u>UNIT IV</u>

Class relationships: Inheritance, Polymorphism, Object class, controlling access to members of class, Direct and indirect super-classes- Access rights in subclasses and packages, Constructor calling sequence, multiple inheritance, per class protection, Dynamic binding of methods, Operator instance of Abstract class, over ridding, Shadowing and Hiding, Finalize, aggregation and composition.

Multi threading: processes and threads, Life cycle of a thread. Thread methods, Creating and naming a thread, priority threads, Sleep and joining a thread, Thread synchronization, and Thread groups.

<u>UNIT V</u>

Java standard packages and classes: Java standard packages-java. lang, java.util, java. math; Java classes-String Buffer, String Tokenizer classes, Wrapper classes for primitive types-Date, Calendar, Random classes, Exception class, Assert Statement, Formatter class, Interface collection and collection framework with Vector, ArrayList, LinkedList, Stack, Arrays, Hashtable classes.

Applets: Basics, skeleton, Initialization and termination, Repainting, Status window, Passing parameters.

Text Books:

1. Jana D, Java and Object-Oriented Programming paradigm, PHI,2005.

2. Herbert Schildt and Dale Skrien ,"Java Fundamentals - A Comprehensive Introduction", Special IndianEdition, McGrawHill, 2013.

3. Herbert Schildt, "Java The Complete Reference" Oracle press,8th Edition, TataMcGraw Hill. 2011,

4. Cay S. Horstmann, Gary Cornell, "Core Java : Volume I – Fundamentals, The Sun Micro Systems Press

Reference Books:

1. B.Eswara Reddy, P.Raghavan, "Programming with Java" T.V.Suresh Kumar, Pearson Edition.

- 2. Programming in Java, S.Malhotra and S.Choudhary, Oxford Univ. Press
- 3. Paul Deitel, Harvey Deitel, "Java How to Program", PHI.
- 4. NageswarRao, "Core Java", Wiley Publishers.
- 5. Bruce Eckel, "Thinking in Java", Pearson Education.
- 6. Mughal, Rasmussen, "A Programmers Guide to Java SCJP", Third Edition, Pearson.
- 7. David Flanagan, "Java in Nutshell", O.Reilly

Course	e Title	DATA A	ACQUI	SITION	B. Tech. ECE VIII Sem.				
Course	e Code	Category	He	ours/We	ek	Credits	Maxin	ks	
1504	806	PJ	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total
			4			3	30	70	100
Mid Exam Duration: 1Hr 30 MinEnd Exam Duration: 3Hrs									
Course	Objectiv	ves:							
• 7	Fo under	rstand concep	ts of a	cquiring	the d	ata from	transducers/inp	out device	es, their
i	nterfacin	g and instrum	entation	system	design.		_		
		0		•	U				
Course	Outcom	es: On success	ful com	pletion of	of this c	ourse, the	students will b	e able to	
CO 1	Choose	the elements	of data a	cquisitio	on techr	niques.			
CO 2	Design	and simulate	signal co	ondition	ing circ	uits.			
CO 3	Describ	e various data	transfer	techniq	ues.				
CO 4	Unders	tand the comp	onents o	f data a	cquisitio	on system.			

<u>UNIT-I</u>

Data Measurement: Transducers – measurement of displacement – measurement of acceleration and vibration: Seismic accelerometer, piezo-electric accelerometer, vibration transducers, feedback transducers – measurement of angular velocities – Fluid flow measurements – Light transducers – acoustic transducers.

<u>UNIT-II</u>

Pre Processing: Signal amplification : - Instrumentation amplifiers, Capacitive amplifiers, the charge – compensating amplifier, the sample – and – hold amplifier. Filters : Analog active filters, software digital filters, hard ware digital filters – Decimation – Calibration methods.

UNIT-III

Data Acquisition: INK - ON - PAPER Recording : pen recorders, 'penless' chart recording, potentiometric recorders, the X – Y plotter – Analog Instrumentation Tape recording : Direct recording, FM recording, Magnetic recording – Digital recording and storage. Tape recording, disc and drum recording, Digital recording methods.

UNIT-IV

Digitisation: Sampling & quantization – A/D Converters picture digitisation. Data Acquisition Systems: Data display systems – Data recording systems – Data processing systems – Integrated data systems – Microprocessors in data acquisition systems.

UNIT-V

Remote Data Acquisition : Passive remote sensing – Active remote sensing – telemetry. Multiplexers : Multiplexers & Concentrators – Statistical multiplexers.

Text Books:

1. K.G.Beauchamp&C.K.Yuen, 'Data Acquisition for signal Analysis, Allen &Unwin Ltd,London (1980).

2. Trevor Housley, 'Data communications and Teleprocessing systems' $- PHI - 2^{nd}Edn$.

3. Hermann Schmid, Electronic Analog/ Digital conversions ,Tata McGraw Hill.

4. H. S. Kalsi, Electronic Instrumentation, TMH, 2nd Edition 2004

References

1. T.R. Padmanabham, Industrial Instrumentation: Springer 2009.

2. S.Gupta and J.P Gupta, "PC interfacing for Data Acquisition and Process Control", Instrument society of America, 1994.

3. John W Webb & Ronald A Reis, "Programmable logic controllers: Principles and Applications", Prentice Hall India, 2003.

4. G.B.Clayton, Data Converters The Mac Millian Press Ltd., 1982.

Course	e Title		SPECT NICAT	B. Tech. EC	E VIII Se	em.			
Course	e Code	Category	He	ours/We	eek	Credits	Maximum Marks		
1504	807	PJ	L	Т	Р	С	Continuous Internal Assessment End Exams		
			4			3	30	70	100
Mid Exa	am Dura	ation: 1Hr 30	Min				End Exam	Duration	n: 3Hrs
Course	Objectiv	ves:							
•]	Го make	familiarize the	Spread	Spectru	m com	nunication	s and various n	nodulation	n
S	chemes.								
•]	Fo learn	the spread spea	etrum sig	gnals ge	neration	and detec	tion.		
Course	Outcom	es: On success	sful com	pletion	of this c	ourse, the	students will be	e able to	
CO 1	Under	stand Fundame	entals of	Spread	Spectru	m			
CO 2	Analys	sis of Direct Se	equence	and Avo	oidance	– Type Sp	read Spectrum	Systems	
CO 3	Detect	the spread spe	ectrum s	ignals.				-	
CO 4	Descri	be the applica	tions of	Spread	Spectru	m to Comm	nunications		
CO 5	Unders	tand Code Div	ision M	ultiple A	Access D	Digital Cell	ular Systems		

<u>UNIT-I</u>

Fundamentals of Spread Spectrum: General concepts, Direct sequence (DS), Pseudo Noise (PN), Frequency Hopping, Time Hopping, Comparison of Modulation methods, Hybrid Spread spectrum systems, Chirp spread spectrum, Baseband modulation techniques.

Analysis of Direct Sequence Spread Spectrum Systems: Properties of PN sequences, Classes of periodic sequences, Properties of m sequences, Partial Co–relation, PN signal from PN sequences, Partial co – relation of PN signals, The PN Signal, De-spreading the PN signal, Interference rejection, Output signal to noise ratio, Antijam characteristics, Interception, Energy bandwidth efficiency.

<u>UNIT-II</u>

Analysis of Avoidance – Type Spread Spectrum Systems: The frequency hopped signal, Interference rejection in a frequency hopping receiver, the time hopped signal.

Generation of Spread Spectrum Signals: Shift register sequence generators, Discrete frequency synthesizers, SAW device PN generators, Charge coupled devices, Digital tapped delay lines.

UNIT-III

Detection of Spread Spectrum Signals -Tracking: Coherent direct sequence receivers, other method of carrier tracking, Delay lock loop analysis, Tau – Dither loop, Coherent carrier tracking, Non coherent frequency hop receiver.

Detection of Spread Spectrum Signals - Acquisition: Acquisition of spread spectrum signals, Acquisition cell by cell searching, Reduction of acquisition time, Acquisition with matched filters, Matched filters for PN sequences, Matched filters for frequency hopped signals, Matched filters with acquisition - aiding waveform.

UNIT-IV

Application of Spread Spectrum to Communications: General capabilities of spread spectrum, Multiple access considerations, Energy and bandwidth efficiency in multiple access, Selective calling and Identification, Antijam considerations, Error correction coding, Intercept consideration (AI), Miscellaneous considerations, Examples of spread spectrum systems.

UNIT-V

Code Division Multiple Access Digital Cellular Systems: Introduction, Cellular radio concept, CDMA Digital cellular systems, Specific examples of CDMA digital cellular systems.

Text Books:

- 1.George. R. Cooper and Clare D. McGillem, —Modren Communications and Spread Spectruml, McGraw hill Book Company.
- 2.Rodger E Ziemer, Roger L. Peterson and David E Borth "Introduction to Spread Spectrum Communication- Pearson, 1st Edition, 1995.
- 3.Mosa Ali Abu-Rgheff "Introduction to CDMA Wireless Communications." Elsevier Publications, 2008.
- 4.Andrew j. Viterbi "CDMA: Principles of spread spectrum communication," Pearson Education, 1st Edition, 1995.

References

1. D. Torrieri, "Principles of Spread-Spectrum Communication Systems," Springer, 2005.

2. V. P.Ipatov," SpreadSpectrumandCDMA:principlesandapplications,"Wiley, 2005.

3. R. C. Dixon, "Spread Spectrum Systems with Commercial Applications," 3rd Ed., John Wiley & Sons, Inc., 1994

4. S. Verdu, Multiuser Detection, Cambridge University Press, 1998.

Course	Title	BIO-MED	ICAL II	NSTRU	MENT	ATION	B. Tech. EC	E VIII Se	em.
Course	Code	Category	He	ours/We	ek	Credits	Maximum Marks		
1504	808	PJ	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total
			4			3	30	70	100
Mid Exa	am Dura	ation: 1Hr 30	Min				End Exam	Duratio	n: 3Hrs
Course	Objectiv	ves:							
• T	o under	stand the funct	ioning c	of Huma	n Cell ai	nd its elect	rical character	istics.	
• T	lo get su	fficient knowle	edge abo	out cardi	ovascul	ar measure	ement and circu	ılatory Sy	stem of
h	eart								
• T	o get fai	miliarize with	pace ma	kers and	Defibri	illators			
• T	o under	stand about the	e electric	al hazar	ds that	may occur	during the usa	ge of med	lical
iı	nstrumer	nts				-	-	-	
Course	Outcom	es: On success	ful com	pletion of	of this co	ourse, the	students will be	e able to	
CO 1	Unders	tand the functi	oning of	f Human	Cell an	d its electi	rical characteris	stics	
CO 2	Descri	be Organizatio	n of cell	l and var	ious po	tentials			
CO 3	Descri	be various bio-	-electroc	les	-				
CO 4	unders	tand the functi	oning of	f cardiov	vascular	measurem	ent and circula	tory Syste	em of
	heart								
CO 5	Analyz	e the electrical	hazards	that ma	y occur	during the	e usage of med	ical instru	ments.

<u>UNIT I</u>

Components of Medical Instrumentation System: Bio-amplifier, Static and dynamic characteristics of medical instruments. Bio-signals and characteristics. Problems encountered with measurements from human beings.

<u>UNIT II</u>

Organization of cell: Derivation of Nernst equation for membrane Resting Potential Generation and Propagation of Action Potential, Conduction through nerve to neuro-muscular junction.

<u>UNIT III</u>

Bio Electrodes: Bio-potential Electrodes-External electrodes, Internal Electrodes. Biochemical Electrodes.Mechanical function, Electrical Conduction system of the heart, Cardiac cycle.Relation between electrical and mechanical activities of the heart. Pacemaker, Defibrillator

UNIT IV

Cardiac Instrumentation Blood pressure and Blood flow measurement: Specification of ECG machine. Einthoven triangle, Standard 12-lead configurations, Therapeutic equipment, Shortwave diathermy.

Respiratory Instrumentation: Mechanism of respiration, Spirometry, Pnemuotacho graph Ventilators.

<u>UNIT V</u>

Patient electrical safety: Types of hazards, natural protective mechanism, leakage current, patient isolation, hazards in operation rooms, grounding conditions in hospital environment.

Text Books:

- 1. Leslie Cromwell and F.J. Weibell, E.A. Pfeiffer,Biomedical Instrumentation and Measurements –PHI, 2nd Ed, 1980.
- 2. John G. Webster, Medical Instrumentation, Application and Design –John Wiley, 3rd Ed., 1998.
- 3. Carr & Brown, Biomedical Equipment Technology, Pearson.
- 4. B. C. Nakra, K.K. Choudhury, "Instrumentation, Measurement and Analysis" -3 rd Edition, Tata McGraw, 2009

Reference Books:

- 1. L.A. Geoddes and L.E. Baker, Principles of Applied Biomedical Instrumentation John Wiley, 1975.
- 2. R.S. Khandpur, Hand-book of Biomedical Instrumentation –TMH, 2nd Ed., 2003.
- 3. Mackay, Stuart R., Biomedical Telemetry –John Wiley, 1968.
- 4. M. Armugam, Biomedical Instrumentation, Anuradha agencies publications.